IV Semester M.Sc. Degree Examination, June 2017 (CBCS) MATHEMATICS M402 TC: Theory of Numbers

Time 3 Hours

Max. Marks 70

Instructions: 1) Answer any five full questions.

2) All questions carry equal marks.

1. a) Define the Mobius function
$$\mu(n)$$
. Prove that $\sum_{d|n} \mu(d) = \begin{cases} 1, & \text{if } n = 1 \\ 0, & \text{if } n > 1 \end{cases}$

b) Define the Euler's totient function
$$\phi(n)$$
 Prove that $\phi(n) = \sum_{n \mid n} \mu(n) \frac{n}{d}$.

c) Find all integers n such that
$$\varphi(n) = \varphi(2n)$$
.

2. a) For
$$n \ge 1$$
, prove that $\psi(n) = n \prod_{p \mid n} \left(1 - \frac{1}{p}\right)$.

c) For
$$n \ge 1$$
, prove that \wedge (n) = $\sum_{d \mid n} \mu(d) \log \frac{n}{d} = -\sum_{d \mid n} \mu(d) \log d$.

c) Let f be multiplicative, g be any arithmetical function and that $f(p^{n+1}) = f(p) \ f(p^n) - g(p) \ f(p^{n+1}), \ \text{for all primes p and all } n \geq 1$ Then prove that for each prime p, the Bell series for f has the form

$$f_p(x) = \frac{1}{1 - f(p)x + g(p)x^2}$$

a) If (a, m) = 1, prove that a*(m) = 1 (mod m).

4

6

4

6

3

4

4

5

10

- b) Given a prime p, let f (x) = $c_0 + c_1 x + \dots + c_n x^n$ be a polynomial of degree n with integer coefficients such that $c_n \neq 0 \pmod{p}$. Prove that the polynomial congruence f (x) = 0 (mod p) has at most n solutions.
- c) Prove that $5n^3 + 7n^5 \equiv 0 \pmod{12}$ for all integers n.
- 5. a) Let n > 1. Prove that $(n-1)! \equiv -1 \pmod{n}$ if and only if n is a prime. 5
 - b) State and prove the Chinese remainder theorem.
 - Find all x which simultaneously satisfy the system of congruences
 X = 1 (mod 3),
 X = 2 (mod 4),
 X = 3 (mod 5)
- 6 a) Define the Legendre's symbol (n|p). Let p be an odd prime. Then for all n, prove that (n|p) = n^{-1/2} (modp).
 - b) If p and q are distinct odd primes, prove that $(p \mid q)(q \mid p) = (-1)^{(p-1)(q-1)/4}$ 6
 - c) Compute (888 | 1999).
- 7. a) If $\alpha \ge 3$, prove that there are no primitive roots mod $9^{2\alpha}$.
 - b) Let g be a primitive root mod p such that $g^{a_1} \equiv 1 \pmod{2}$. Then prove that for every $\alpha \geq 2$, $g^{o(p^{a_1})} \neq 1 \pmod{p}$
 - c) Prove that 3 is a primitive root mod p if p is a prime of the form $2^n + 1$, n > 1. 4
- 8 a) Prove that

1)
$$(1 + x) (1 + x^3) (1 + x^5)$$
...

$$=1+\frac{x^{4}}{(1-x^{2})^{4}}+\frac{x^{4}}{(1-x^{2})(1-x^{4})}+\frac{x^{9}}{(1-x^{2})(1-x^{4})(1-x^{6})}+...$$

ii) $(1 + x^2) (1 + x^4) (1 + x^6)$...

$$=1+\frac{x^2}{(1-x^2)^2}+\frac{x^6}{(1-x^2)(1-x^4)^2}+\frac{x^{12}}{(1-x^2)(1-x^4)(1-x^6)^2}....$$

b) State and prove the Jacobi's triple product identity.